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Abstract—The temperature variation in the insulation around an electronic component, mounted on a
horizontal circuit board is studied numerically. The flow is assumed to be laminar and fully developed.
The effect of mixed convection and two different types of insulation are considered. The mass, momentum
and energy conservation equations in the fluid and conduction equation in the insulation are solved
using the SIMPLER algorithm. Computations are carried out for liquid Freon and water, for different
conductivity ratios, and different Rayleigh numbers. It is demonstrated that the temperature variation
within the insulation becomes important when the thermal conductivity of the insulation is less than ten
times the thermal conductivity of the cooling medium.

INTRODUCTION

CoOLING of electronic equipment has been studied in
great detail in recent years. When the heat dissipation
from the electronic equipment is higher than 0.1 W
cm™?, immersion forced convection cooling by
liquids, such as Freon and water, is used. When the
electronic circuit boards are stacked horizontally, we
obtain a combination of shrouds and rectangular heat
sources as shown in Fig. 1. Braaten and Patankar [1]
presented a study of laminar mixed convection for
the geometry shown in Fig. 1. They modelled the
electronic components as a uniform heat generating
block with infinite thermal conductivity. They also
assumed the flow to be hydrodynamically and therm-
ally fully developed. This assumption is valid when
the gap between the components in the axial direction
is small. They have demonstrated that buoyancy can
enhance heat transfer significantly. The model pro-
posed by Braaten and Patankar [1] for the electronic
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F1G. 1. Geometry of present work.

components is reasonable if a fluid like air is used as
a cooling medium. If fluids like Freon or water are
used as cooling media then the temperature variation
within the insulation, surrounding the chip, can be
comparable to that between the wall of the package
and the fluid. Hence, it is necessary to account for the
temperature variation within the insulation to predict
the chip temperature. The thermal conductivities of
the chip, the leads and the heat spreaders are large
compared to that of the insulation and hence, they
can be assumed to be at constant temperature. In this
paper we have extended the work of Braaten and
Patankar [1] to account for the temperature variation
within the insulation.

PRESENT MODEL AND PROBLEM
FORMULATION

We are aware of only two papers [2, 3] where the
investigators have modelled the chip and the insu-
lations separately. They have assumed the chip to be
covered by the insulation from all sides. This assump-
tion is valid for surface-mounted components, but
not for dual in-line processors. The leads and heat
spreaders for dual in-line processors are exposed to
the cooling fluid and allow the convective cooling to
occur from the sides. We have considered two possible
configurations. One, in which the insulation is present
only on the top of the chip and the other, in which
the insulation is present both on the top and sides
(Fig. 2). We have assumed the bottom of the chip to
be perfectly insulated. We have assumed the flow to
be hydrodynamically and thermally fully developed
in the axial direction as assumed by Braaten and
Patankar [1]. Our primary objective is the prediction
of the chip temperature. We have already observed in
Fig. 1 that, due to the symmetry of this problem, we

815



816 S. Ray and J. SRINIVASAN

NOMENCLATURE
a, A dimensional and dimensionless half Pr Prandtl number, v/a
width of the heat generating part o heat dissipation per unit axial length of
A, surface area of the block per unit axial the computational module
length of the computational module, Ra Rayleigh number
H+L s, S dimensional and dimensionless half
A, cross-sectional area of the spacing between the blocks
computational domain open to flow, T temperature
C{L+S]—-HL T,, T,, bulk fluid temperature, average wall
b,B dimensional and dimensionless height temperature of the block
of the heat generating part u Uyv, V.w, W dimensional and
C spacing between shrouds dimensionless velocity components in
C, specific heat at constant pressure the x-, y-, z-directions
g acceleration due to gravity x,X,y,Y,z,Z dimensional and
h,H  dimensional and dimensionless height dimensionless horizontal, vertical and
of the block axial coordinates.
h. average heat transfer coefficient
ke thermal conductivity of the fluid Greek symbols
k, thermal conductivity of the solid o thermal diffusivity of the fluid
K, conductivity ratio, k /k, B thermal expansion coefficient of the
I, L dimensional and dimensionless half fluid
width of the block 0 dimensionless temperature
Nu average Nusselt number, h H/k; 0, dimensionless bulk temperature
P pressure a. dimensionless average wall temperature
P mean pressure averaged over the v kinematic viscosity of the fluid
passage cross-section P fluid density
p* effective pressure, p+p.gy Oc fluid density at temperature 7,
P dimensionless pressure ¥ dimensionless stream function.

can find a typical repeating module (in the x—y plane)
and hence, we have analysed that module only. We
have solved the governing continuity, momentum and
energy equations for a quasi-three-dimensional lami-
nar flow for an incompressible Newtonian fluid. The
Boussinesq approximation has been made to account
for the free convection effects. We express the buoy-
ancy term, pg, as

pg = p[1-B(T-T.lyg
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h
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-
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The term p.g is absorbed in the pressure term by
defining an effective pressure

p*=p+p.gy.

As the flow is hydrodynamically fully developed, all
the velocity gradients in the axial direction vanish
(0u/0z = dv/6z = Ow/0z = 0). The axial pressure
gradient is replaced by 8p/0z, where p is the mean
pressure averaged over the cross-section of the
passage. 0p/0z is taken as constant. For fully
developed laminar flow with a boundary condition of

Insulation (case)
h
ChipyHeat
spreaders and b
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L———'Za *—-4
2L
Model -2

F1G. 2. Proposed models of the package.
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uniform heat flux per unit axial length, all temperature
rise will be linear with axial distance and hence, we
obtain

0T|0z = 0T,/0z = 0T, [0:z.
Again, from the energy balance, we obtain
dT,/dz = Q'/(pC,wA.).

We have defined the following non-dimensional quan-
tities in order to express the governing equations in
the dimenstonless form

X=1x/C, Y=y/C, S=s/C, L=IC
H=h/C, A=a/C, B=b/C

U=uCla, V=0vCla, W =pvw/(—dp/dz)C?
0 = ke(T—-T)/Q", P=p*C*[(pa?)

Pr=v/a, Ra=gpQ C?/(avk;).

Substituting these dimensionless variables in the con-
servation equations, we obtain

oL w_,
axTar=

LU0V _ e TPU &V

ax T ey= "ax T axt t ave

FY A1 4 oP a3V v
oW oW W oW
Uﬁ+Vﬁ=Pr+Pr|:EX,—Z+W:I

p20 0 [T 0] [cTw

ax ey Tlax v || 4 |w

In addition to these, we have one more energy equa-
tion for the solid (insulation)

a0 0| 0

ax: Tav? TV
Here, we have neglected the axial conduction within
the insulation.
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The coefficient C?/4, is only a function of geo-
metric parameters (S, L, H). We have taken S = 0.5,
L =05, and H=0.5 for the present analysis. We
have taken 4 = 0.5 and B =0.1 for model 1 and
A =0.25 and B = 0.25 for model 2. The geometric
parameters are kept fixed for the problem.

The boundary conditions (shown in Fig. 3)
AtX=0,forall Y
U=0, oV/oX=0, dW/X=0,
O0T/0X = 08/¢X = 0.
AtX=L+S8, forall Y
U=0, oV/oX =0, oW/oX =0,
O0T/0X = 98/0X = 0.
At Y =0, forall X

U=0, V=0, W=0, 0T/6Y=0a6/0Y =0.
AtY=C, forall X
U=0, V=0, W=0, JT/0Y=30/0Y =0.

All the velocities within the solids are zero. T = T. or,
0 = 0 on the heat generating part. At the solid-liquid
interface the fluxes are matched, for example, at
X=LY<H

oT oT
k55Xf‘L =kaxl,.
00 o0
or kséj? .- =:kfzi§'L+.

This boundary condition at the interface is taken care
of by employing an interface conductivity, as pre-
scribed by Patankar (4].

We have discretized the conservation equations
governing the flow and heat transfer in this problem
by the control volume approach, as described in ref.
[4]. The computations were carried out on a DEC-
1090 system using the SIMPLER algorithm [4]. The
ADI method is used to solve the discretized equations.

After obtaining the converged solutions, we have

I u*o,v-o,w=o,aom-o—\

Um0 U= 0 Ua0
avIi =0 V7aX=0 IV/W=0
MW/AX=0 WIX=0 IWIaN=0
0/3x=0 20/3%=0 20/30=0

[ 8=0 00 /
W
L

x \ /
U= 0, V-O,W=O,aelav-o

Model -2

Model -1

F1G. 3. Computational domain with conditions at the boundary (predominant flow is perpendicular to the
figure).
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calculated the non-dimensional stream-function. This
is defined as

AYidY =U and Y/ iX = -V,

We have also calculated the heat transfer coefficient
and Nusselt number from the converged solutions.
We have defined the average heat transfer coefficient
() as

he = Q'[[A(T, — TL)].
Hence, the Nusselt number
Nu = h.H/k,

_ Q'H
" kIH+ LT~ T.— (T, —T)]

= YA+ L/H)O, —0,)].

We have chosen a 22 x 22 grid for our solution with
a uniformly distributed grid over most of the domain
and finer grids near the interface between the block
and the fluid. We have checked the maximum of the
mass residues over the control volumes after each
iteration. The convergence criterion is varied from
10~7 to 10~ ¢ for different Rayleigh numbers. At low
Rayleigh numbers and high conductivity ratios, the
converged solutions are obtained in a few hundred
iterations. As the Rayleigh number increases, or the
conductivity ratio decreases, the number of iterations
required to achieve the converged solutions increase.
We have reduced the convergence criterion further
and calculated the Nusselt number and non-dimen-
sional chip temperature (7, defined later) and
checked the variations in their values. The final solu-
tion is obtained when these variations are less than
0.1%. We have increased the number of grids to
28 x 28 and obtained some of the solutions. We
observed that the Nusselt number and the non-dimen-
sional chip temperature vary only at the third decimal
place.

The computer code was validated by calculating the
Nu for different Ra, for Freon, with infinite con-
ductivity ratio. The Nusselt number obtained was

F1G. 4(a). Isotherms for Pr=3.5, Ra=10% K, =5.0,

model 1.

found to be within 1% ot the solutions obtained by
Braaten and Patankar [1].

RESULTS AND DISCUSSION

We have obtained the solutions for different Ray-
leigh numbers, ranging from 0 to 10° for fluids with
Pr = 3.5, corresponding to liquid Freon and Pr = 7.0,
corresponding to water for different conductivity
ratios. For Freon as the coolant, we have chosen the
conductivity ratio to be 5.0, 10.0 and 20.0. For water
as the coolant, we have analysed the flow for K, = 2.0
and 4.0. Note that the thermal conductivity of the
insulation varies from 0.6 to 2.0 W m~ "' K~ ', whereas,
the thermal conductivities of liquid Freon and water
are 0.075and 0.6 Wm™' K ', respectively. We have
only obtained the single eddy solution. We have also
studied different cases for air, with Pr = 0.7. Since the
thermal conductivity of air is very low, as compared
to the thermal conductivity of insulation, we observed
that the temperature variation within the insulation is
not important and hence we have not presented any
result for air as coolant.

Isotherms and streamlines

We consider first, the systems cooled by liquid
Freon. The isotherms are presented for model 1 for
Ra = 10° for K, = 5.0 and 20.0 in Figs. 4(a) and (b).
The values 0.1, 0.2, etc. are the values of (—0,,.,)/
(00— 0.n). In Figs. 5(a) and (b), we have presented
the isotherms for model 2, for the same Rayleigh
number and conductivity ratio. We observe that as the
conductivity ratio decreases, there are more isotherms
within the insulation—which indicates that the tem-
perature variation within the insulation becomes more
important for lower conductivity ratios. In Figs. 6(a)
and (b), we have presented the isotherms for Freon
cooled systems, for Ra = 10°, K, = 5.0 and 20.0 for
model 1. We observe that as the Rayleigh number
decreases (i.e. when the heat dissipated by the elec-
tronic component is less) then the effect of buoyancy
on flow and heat transfer also becomes less and hence,

Fig. 4(b). Isotherms for Pr= 3.5, Ra=10° K, = 20.0,
model 1.
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F1G. 5(a). Isotherms for Pr=3.5, Ra=10% K, =50,
model 2.

the strength of secondary circulation is also less. Thus,
for higher Rayleigh numbers, the secondary flow vel-
ocities are higher, which tend to shift the isotherms
towards the left of the figure. We have presented the
streamline plots for Freon as the cooling medium, for
K, = 20.0 and Ra = 10° and 10° in Figs. 7(a) and (b),
respectively. The values 0.1, 0.2, etc. are the values of

(l/’ - l»bmin)/(!//max - Wmin)-

Calculation of heat transfer coefficient and Nusselt
number

We have not presented the variation of the Nusselt
number as a function of Rayleigh number for the
systems cooled with liquid Freon because the vari-
ation of the Nusselt number is within 2% of the solu-
tions obtained by neglecting the temperature variation
inside the insulation. We have presented the plot of
the Nusselt number as a function of the Rayleigh
number for the systems cooled by water, for K, = o
in Fig. 8. We have observed that the variation of the
Nusselt number for the conductivity ratio of 2.0 is
within 5% of the solution obtained where the tem-
perature variation within the insulation is neglected.
We have also observed that there is hardly any change
in the Nusselt number between models 1 and 2.

FiG. 6(a). Isotherms for Pr=3.5, Ra=10°, K, =5.0,
model 1.
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F1G. 5(b). Isotherms for Pr =3.5, Ra=10°% K, = 20.0,
model 2.

Non-dimensional chip temperature

The Nusselt number variation for different con-
ductivity ratios and different Rayleigh numbers,
alone, is not important for evaluating the maximum
temperature attained by the chip. We have defined the
non-dimensional chip temperature as

Tr = (Tc - 7-1w)/(7—-‘w - Tb)

The non-dimensional chip temperature is the ratio of
the temperature drop in the insulation to the tem-
perature drop in the fluid. We have presented the
variation of T, to indicate the relative strength of the
conduction within the insulation and the convection
outside the package.

In Fig. 9(a), we have presented the variation of the
non-dimensional chip temperature with Rayleigh
number for different conductivity ratios for model 1.
From the figure, we observe that T, increases with the
increase in Rayleigh number. Free convection is not
playing any significant role in heat transfer below a
Rayleigh number of 10* and hence, 7, remains con-
stant up to a Rayleigh number of 10> The effect of
temperature variation within the insulation becomes
more important for higher Rayleigh numbers and
lower conductivity ratios. In Fig. 9(b), we have pre-

07
0.3

0.9
0.2

‘o

F1G. 6(b). Isotherms for Pr= 3.5, Ra=10° K, =20.0,
model 1.
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FiG. 7(a). Streamlines for Pr = 3.5, Ra = 10°, K, = 20.0,

model 1.
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FIG. 8. Nu vs Ra, for water (Pr = 7.0), models [ and 2.

sented the variation of T, with Rayleigh number for
model 2. These plots also show the similar trend as the
previous one, but the values of 7, are higher than
those obtained for model 1, for the same Rayleigh
number and conductivity ratio. In model 1, we have
assumed that the heat generating block is extended up
to the boundary of the solid, whereas, in model 2, we
have assumed that the heat generating block is
covered by the insulation from all sides. The assump-
tion of model 1 allows the fluid to come in contact
with the heat generating part and hence, the fluid can
take away the heat directly from this part. In the case

A, e

FiG. 7(b). Streamlines for Pr = 3.5, Ra = 10°, K, = 20.0,
model 1.

of model 2, the heat generating part is not in direct
contact with the fluid and hence the heat is transferred
by conduction up to the wall of the solid block and
from the wall it is taken away, by convection, by the
fluid. This allows a lower value of T.— T, and hence,
T, for model 1 is also lower. Note, that for both the
models T, — T, remains almost the same. Also note
that, for a Rayleigh number of 10 and K, = 10.0 the
temperature drop in the insulation is about 50% of the
temperature drop in the fluid. Hence, we can conclude
that the conjugate problem must be considered for
K. < 10.0.

In Figs. 10(a) and (b) we have presented the variation
of non-dimensional chip temperature with Rayleigh
number for water cooled systems for models 1 and
2, respectively. The observations are similar to the
previous cases, where Freon is used as the cooling
medium.

Design calculations

So far we have discussed the effects of Rayleigh
number and conductivity ratio on heat transfer for
different cooling media. Although we have presented
the variations of T, with Rayleigh number for different
K., different models and different coolants, we have
not discussed the impact of these results on the pre-
diction of the chip temperature.

Let us consider a case where water is used as the
coolant. The spacing between the shrouds is 0.6 cm,

:‘ 124 (a) Modet -1 12+ (b) Modet -2
|
3
<°"‘ ] 1 K =10
3 Ken$ 20 S
'uol' 20-\ 10 04}
L =
3 X
(L) 1 1 1 i 1 0 1 I 1 i 1
00 0' 07 107 10* 0% w® w® 100 07 0 w* w0 v

Rayleigh numberyRa

Rayleigh number , Ra

F1G. 9. Non-dimensional chip temperature vs Rayleigh number for Pr = 3.5.
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FiG. 10. Non-dimensional chip temperature vs Rayleigh number for Pr = 7.0.

and the heat dissipated by the components per unit
axial length is 0.1 kW m~". This gives us a Rayleigh
number of 8.5x 10°. Let us assume that the com-
ponents are such that they can be simulated by model
1 and the conductivity ratio is 2.0. Now from Fig. 11,
we can find out the value of k(7. —T,)/Q" as 0.165.
This gives us

T.—T, = 27.5°C.

Now, if we neglect the temperature variation within
the insulation and calculate the same, from the Nusselt
number, then, we will obtain

T.—T, = 10.4°C.

Hence, the error in predicting the temperature differ-
ence between the chip and the bulk is 62%.

From simple energy balance, the bulk temperature
of the fluid at any axial location can be calculated
by knowing the inlet temperature of the fluid, heat
dissipation rate, average axial velocity of the fluid,
and the geometry. Hence, the chip temperature at any
axial location can also be predicted with no difficulty.

Kpm= 2:0 &.0
0.4 L
2oal-
oo
{
Wo.21
-
x
01
Model~1
0 P y ] ! i
0% 10! 10?2 w0 0% w0 wf 107

Rayleigh number, Ra
FI1G. 11. k((T,—T,)/Q’ vs Ra for Pr = 7.0.

Similar results have been presented by Ray [5] for
water and Freon as coolant, for both the models.

CONCLUSIONS

The following conclusions can be drawn from our
present study :

(1) The average Nusseit number, and hence the
average heat transfer coefficient, is not a strong func-
tion of the conductivity ratio and the different models.

(2) The temperature variation within the insulation
becomes more important in the case of a low con-
ductivity ratio and a high Rayleigh number. There
can be substantial error in predicting the chip tem-
perature if the temperature variation within the insu-
lation is neglected.

(3) The conjugate problem has to be considered
for K, < 10.0.
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ANALYSE DU REFROIDISSEMENT D’UN ARRANGEMENT DE COMPOSANTS
ELECTRONIQUES PAR CONVECTION LAMINAIRE MIXTE, CONJUGUEE

Résumé—On étudie numériquement la variation de température dans 1'isolant autour d’un composant
¢lectronique monté sur un tableau horizontal. L'écoulement est supposé laminaire et pleinement établi. On
considére l'effet de la convection mixte et deux types différents d’isolation. Les équations de bilan de masse,
quantité de mouvement et d’énergie dans le fluide et 'équation de conduction dans I'isolant sont résolues
par algorithme SIMPLER. Les calculs sont faits pour le Freon et I’eau liquide, pour différents rapports de
conductivité et differents nombres de Rayleigh. On montre que la variation de température dans I'isolant
devient importante quand la conductivité de I'isolant est au moins dix fois la conductivité thermique du
milieu refroidissant.

UNTERSUCHUNG DER KUHLUNG DURCH KONJUGIERTE MISCHKONVEKTION IN
EINER GEKAPSELTEN ANORDNUNG ELEKTRONISCHER BAUTEILE

Zusammenfassung—Die Temperaturverteilung der Isolation eines auf eine waagerechte Platine montierten
elektronischen Bauteils wird numerisch untersucht. Dabei wird die Strémung als laminar und voll aus-
gebildet betrachtet. Es wird der EinfluBl der Mischkonvektion und zweier unterschiedlicher Isolationsarten
berlicksichtigt. Die Massen-, Impuls- und Energie-Erhaltungssitze im Fluid sowie die Wirme-
leitungsgleichung in der Isolation werden mit Hilfe des SIMPLER-Verfahrens gelost. Berechnungen werden
fur Kéltemittel und Wasser, fir verschiedene Verhiltnisse der Wirmeleitfahigkeiten und verschiedene
Rayleigh-Zahlen durchgefiihrt. Es wird veranschaulicht, da die Temperaturverteilung in der Isolation
dann wichtig wird, wenn die Wiarmeleitfahigkeit der Isolation weniger als das Zehnfache der Wirme-
leitfahigkeit des Kithlmediums betrégt.

AHAJIN3 COITPSIKEHHOM 3AJJAUM OXJIAXAEHHA 3A CUET TAMMHAPHOM
CMEIIAHHON KOBEKIIVH ITPH 3KPAHUPOBAHHUH DJIEKTPOHHLIX SAEMEHTOB

AmoTamss—UYHCIEHHO HCCIEAYETCS H3MEHEHHE TEMIIEPATYD B H3OIALMOHHOM CJIO€ 3JIEKTPOHHOIO 3JIe-
mMenTa. Ilpeanonaraercs, YTo Te4eHHe ABJIACTCH JaMHUHADHBIM M HOJHOCTHIO Pa3BHTHIM. PaccMartpu-
BalOTCA CJydadl CMEINAHHOH KOHBCKIAM H [Ba Pa3/IMYHbIX THNA W3OJMLAOHHOrO Mmartepuana. C
Hcnosb3oBaineM aropurMa SIMPLER pemaroTcs ypaBHEHHS COXPaHEHHS MacChi, KOJIHYECTBA JBHKE-
HHS ¥ SHEPTHH B XHMIKOCTH, 4 TaKXKe ypaBHEHHE TEIUTONPOBOAHOCTH B H30JAUMOHHOM MatepHane. Ipo-
BOMATCH PacHEThl IS XHIKOrO XJIAHAT€HTA H BOOBI IPH Pa3sIHYHLIX OTHOILNEHHAX TEILIONPOBOIHOCTH U
pasHbix wnchax PefiHosbnca. [TokazaHo, 4To H3MEHEHHE TEMIIEPATYp B M3OJALMOHHOM CJIOE SBJISETCS
CYLHECTBEHHBIM, KOra €r0 TemJIONPOBOOHOCTb CTAHOBHTCA HHXE TEIUIONPOBOAHOCTH OXJAXAAOIEH
cpenst B 10 pa3.



